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Abstract
We investigate the generally assumed inconsistency in light cone quantum field
theory that the restriction of a massive, real scalar free field to the nullplane
� = {x0 + x3 = 0} is independent of mass (Leutwyler, Klauder and Streit
1970 Nuovo Cimento A 66 536), but the restriction of the two-point function
is mass dependent (see, e.g., Nakanishi and Yamawaki 1977 Nucl. Phys. B
122 15; Yamawaki K 1997 Proc. Int. Workshop New Nonperturbative Methods
and Quantization on the Light Cone (Les Houches, France) Preprint hep-
th/9707141). We resolve this inconsistency by showing that the two-point
function has no canonical restriction to � in the sense of distribution theory.
Only the so-called tame restriction of the two-point function, which we have
introduced in (Ullrich P 2004 Uniqueness in the characteristic Cauchy problem
of the Klein–Gordon equation and tame restrictions of generalized functions
Preprint math-ph/0408022 (submitted)) exists. Furthermore, we show that this
tame restriction is indeed independent of the mass. Hence the inconsistency
is induced by the erroneous assumption that the two-point function has a
(canonical) restriction to �.

PACS numbers: 03.70.+k, 11.10.Cd, 02.30.Sa

1. Introduction

Let φ(x) be the real scalar free quantum field of mass m > 0, and let |0〉 denote the (unique)
vacuum state. The (Wightman) n-point functions (or vacuum expectation values) are defined
by Wn(x1, . . . , xn) = 〈0|φ(x1) · · · φ(xn) |0〉 (n ∈ N). Since φ is a free field, the two-point
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function W2(x, y) is explicitly given by W2(x, y) = −iD(−)
m (x − y), where D(−)

m (x) is the
negative frequency Pauli–Jordan function

(
ω(p) =

√
p2 + m2

)
D(−)

m (x) = −1

i(2π)3

∫
d3p

2ω(p)
e−i(ω(p)x0+x·p).

Treating the field φ in the framework of light cone quantization, the canonical commutator
relation reads

[̃φ(x̃)̃φ(ỹ)]x+=y+=0 = 1

4i
ε(x− − y−)δ(x⊥ − y⊥), (1.1)

where ε is the sign function and we have introduced light cone coordinates

x̃ = (x+, x̃) = (x+, x⊥, x−) = κ(x0, x1, x2, x3)

by

x+ = (1/
√

2)(x0 + x3), x⊥ = (x1, x2), x− = (1/
√

2)(x0 − x3).

Furthermore, φ̃(x̃) = φ(κ−1(x̃)) denotes the transformed field. There is a generally alleged
inconsistency in light cone quantum field theory (see, for example [10, 17]) which we explain
now in detail: using the commutator relation (1.1) one formally obtains the equation

〈0| φ̃(x̃)̃φ(0) |0〉x+=0 = 1

2π

∫
p+>0

dp+

2p+
e−ip+x−

δ(x⊥), (1.2)

where the right-hand side obviously does not depend on the mass. Since W2(x, y) =
−iD(−)

m (x − y), (1.2) should be equal to −i times the restriction of D̃(−)
m (x̃) to x+ = 0, where

D̃(−)
m (x̃) = D(−)

m (κ−1(x̃)) denotes the negative frequency Pauli–Jordan function transformed to
light cone coordinates. In (3+1)-dimensional Minkowski space M

4D(−)
m (x) has the following

explicit representation [1]:

D(−)
m (x) = lim

ξ→0
ξ∈V +

im2

4π2
h(−m2(x − iξ)2), (1.3)

where V + = {p ∈ M
4 : p2 > 0, p0 > 0}, h(ζ ) = K1(

√
ζ )/

√
ζ ,K1 is the modified Bessel

function of second kind and the branch of
√

ζ is taken to be positive for ζ > 0. One
seemingly obtains a contradiction by transforming formally the right-hand side of (1.3) to
LC-coordinates and putting x+ = 0, because then the right-hand side remains dependent on
the mass m. However, as we will see later, the formal manipulations at the right-hand side
of (1.3) are ill-defined, since D(−)

m (x) has no (canonical) restriction to {x0 + x3 = 0}. More
precisely, the operations of taking the limit ξ → 0 (ξ ∈ V +) (in S ′(R4)—the space of tempered
distributions) and putting x+ = 0 do not commute in (1.3).

2. Notations and conventions

Already in the introduction we have introduced light cone coordinates x̃ = κ(x) by using the
Kogut–Soper convention [2], where x = (xµ) are Minkowski coordinates. As usual in light
cone physics one writes

x̃ = (x+, x̃) = (x+, x⊥, x−), x⊥ = (x1, x2).

The Minkowski bilinear form 〈x, y〉M = xµxµ = xµgµνx
ν , where (gµν) = diag(1,−1,−1,

−1) is the usual Minkowski metric, transforms to the so-called LC-bilinear from

〈x̃, ỹ〉L = 〈κ−1(x̃), κ−1(ỹ)〉M = x+y− + x−y+ − x⊥ · y⊥ (x⊥ · y⊥ = x1y1 + x2y2)
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when going over from Minkowski coordinates to light cone coordinates; hereby κ : R
4 → R

4

is the linear transformation from Minkowski coordinates to light cone coordinates.
We also use light cone coordinates p̃ = κ(p) in momentum space. However, since x+ is

the time variable in light cone physics and x+ is multiplied by p− in 〈x, p〉L, the variable p−

takes on the role of energy and p̃ = (p+, p⊥) is the (light cone) spatial momentum. Hence
the light cone variable p̃ is split into p̃ = (p̃, p−) with p̃ = (p+, p⊥) in contrast to the
LC-spacetime variable x̃ which we have split into x̃ = (x+, x̃) with x̃ = (x⊥, x−). Here a little
bit care is needed.

Throughout this paper we denote by �τ(τ ∈ R) the linear subspace

�τ = {x ∈ R
4 : (1/

√
2)(x0 + x3) = τ },

where, especially for τ = 0, we set � = �0. Note that in light cone coordinates �τ reads
{x+ = τ }, i.e., κ(�τ ) = {x̃ ∈ R

4 : x+ = τ }.
If U ⊂ R

m is an open set, we denote by D(U) the (complex) vector space consisting of
all (complex-valued) smooth, i.e., C∞ functions on U with compact support. On D(U) one
defines a topology which makes D(U) into a complete locally convex space [8, 12], the dual
space D′(U), i.e., the vector space of all linear, continuous functionals on D(U) is called the
space of distributions. If φ ∈ D′(U) is a distribution and f ∈ D(U) a test function, we denote
by φ(f ) as well as by (φ, f ) the evaluation of φ at f . It is well known [12] that every locally
integrable, complex-valued function ϕ on U induces a distribution by ϕ(f ) = ∫

ϕf dx, and
that ϕ is uniquely determined by its induced distribution almost everywhere. This especially
implies that the mapping, which maps a continuous function to its induced distribution, is
one-to-one and hence, by identifying a function with its induced distribution, we can write
C0(U) ⊂ D′(U); we also have D(U) ⊂ Ck(U) ⊂ D′(U) for all 0 � k � ∞. On the space
D′(U) of distributions one usually installs the so-called weak∗-topology [12]. An essential
feature of distribution theory is the fact that with respect to the weak∗-topology D(U) is a
dense subspace of D′(U); it holds even that for every distribution ϕ ∈ D′(U) there exists
a sequence (fn)n∈N of functions fn ∈ D(U) which converges to ϕ in D′(U). Thus any
sequentially continuous function on D′(U) is uniquely determined by its values on D(U).

Along with D(Rm) one introduces the Schwartz space S(Rm) of rapidly decreasing
functions and defines on S(Rm) a topology which makes S(Rm) into a Fréchet space. The
dual space S ′(Rn) is called the space of tempered distributions (or generalized functions)
[1, 8, 12]. As in the case of distributions we may assume S(Rm) ⊂ S ′(Rm). Furthermore
S(Rm) is dense in S ′(Rm) where S ′(Rm) is endowed with the weak∗-topology. Note that
D(Rm) ⊂ S(Rm), but the topology of D(Rm) is finer than the subspace topology induced by
S(Rm). One usually identifies S ′(Rm) with the subspace of distributions (∈ D′(Rm)) which
admit a linear, continuous extension to S(Rm).

3. The canonical restriction of a distribution

In this section we summarize some well known results from distribution theory [8] which will
be needed in the sequel.

As already mentioned in the previous section, one has a chain of inclusions D(U) ⊂
Ck(U) ⊂ D′(U)(0 � k � ∞). Since distributions can be approximated by smooth functions
in D(U) with respect to the weak∗-topology of D′(U), it is possible to define operations on
distributions by continuous extension from the smooth case. However, there are operations on
functions which cannot be extended to the whole of D′(U) due to the presence of singularities.
Thus one has to remain in appropriate subspaces of D′(U) by taking care of the singularities
of distributions. Prominently, the definition of the canonical product of distributions causes
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problems with far reaching consequences in quantum field theory. The product operation
of distributions is strongly related to the restriction operation which is a special case of the
so-called pullback operation. We explain the pullback operation and its connection to the
(canonical) restriction of distributions in appendix B.

Assume U ⊂ R
m and V ⊂ R

n are non-empty, open subsets and a ∈ U is fixed. One
would like to define the restriction φ|x=a = φ(a, y) of a distribution φ ∈ D′(U × V ) in a
canonical way, i.e., by continuous extension from the smooth case. To see, how this can be
done, assume φ is a smooth function, i.e., φ(x, y) ∈ D(U × V ). Then, by Fourier’s inversion
formula, for all f (y) ∈ D(V )

(φ(a, y), f (y)) = (2π)−(n+m)

∫
dmp dn qφ̂(p, q) ei〈a,p〉f̂ (−q), (3.1)

where ‘ˆ’ means taking the Fourier transform. The right-hand side of (3.1) now serves as the
defining formula for the canonical restriction of a distribution φ(x, y) ∈ D′(U × V ) to the
hyperplane {x = a} [8]. Note that if the distribution φ(x, y) has compact support the Fourier
transform φ̂(p, q) is a smooth (even entire analytic) function by a general theorem of Paley and
Wiener (see, e.g., [12]). If φ(x, y) has not necessarily compact support one easily reduces to
the case of compact support by localization [8]. Note that distributions can be glued together
such that it is only necessary to define the restriction locally. The right-hand side of (3.1) is not
well-defined for any distribution φ ∈ D′(U ×V ) (with compact support) as can easily be seen
by the following example: let φ(x, y) be the delta function δ(x, y). As is well known (e.g.
[12]), the Fourier transform of δ(x, y) is the constant function 1, i.e. δ̂(p, q) = 1, and thus
the integral in (3.1) is not convergent. To obtain a well-defined distribution by the right-hand
side of (3.1) one has to put conditions on the Fourier transform φ̂(p, q). Since f̂ (q) is rapidly
decreasing at infinity, one only needs conditions for the asymptotic behaviour of φ̂(p, q) in a
region of the form |p| > ε|q| for some ε > 0; note that this is an open conic neighbourhood
for all points of the form (p, 0)p ∈ R

m\0. At this point the so-called wave front set [8, 11]
enters the scene. For convenience of the reader we discuss the wave front set of a distribution
in more detail in appendix A. For the moment, however, it is enough to know that the wave
front set of a distribution φ ∈ D′(X)(X ⊂ R

n open) is a subset WF(φ) ⊂ X × R
n\0 which

encodes the behaviour at infinity of the Fourier transform of (localizations of) φ. In view of
(3.1) this information is crucial in defining the restriction of a distribution. From theorem
appendix B.1 4 one gets the following criterion which also serves as the definition of the
(canonical) restriction of a distribution.

Proposition 3.1. Let U ⊂ R
m, V ⊂ R

n be open sets and a ∈ U . Then the restriction φ|x=a

can be defined in one and only one way for all φ(x, y) ∈ D′(U × V ) with

{((a, y), (p, 0)) | y ∈ V, p ∈ R
m} ∩ WF(φ) = ∅ (3.2)

so that φ|x=a = φ(a, ·) when φ ∈ C∞(U × V ).

Definition 3.2. Let U ⊂ R
m, V ⊂ R

n be open sets and a ∈ U . Then we say that
φ(x, y) ∈ D′(U × V ) has a canonical restriction to {x = a} if (3.2) holds. The distribution
φ(a, y) = φ|x=a given by proposition 3.1 is called the canonical restriction of φ to {x = a}.
Remark 3.3. (a) If φ(x, y) ∈ D′(U × V ) has a restriction to {x = a} then also any
∂α
x ∂

β
y φ(x, y)(α, β multi-indices) has a restriction to {x = a} – by [8], WF

(
∂α
x ∂

β
y φ

) ⊂ WF(φ).
(b) Since the wave front set is a closed set one easily finds that if φ(x, y) ∈ D′(U × V )

has a restriction to {x = a} then there is an open neighbourhood U ′ ⊂ U of a such that φ(x, y)

has a restriction to {x = a′} for all a′ ∈ U ′.
4 See the discussion after corollary appendix B.2.
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(c) Condition (3.2) in the definition of the restriction of a distribution looks a little bit
artificial. However, one can show (see, e.g. [16]) that φ(x, y) ∈ D′(U × V ) has a restriction
to {x = a} if and only if, sufficiently close to x = a, φ(x, y) is C∞-dependent on x as a
parameter; i.e., there is an open neighbourhood W ⊂ U of a and a family (φx)x∈W in D′(V )

such that W → C, x → (φx, g) is C∞ for every g ∈ D(V ) and

(φ(x, y), f (x)g(y)) =
∫

W

(φx, g)f (x) dx (3.3)

for all f (x) ∈ D(W), g(y) ∈ D(V ); if this is the case φ(a, y) = φa(y). Note that the family
(φx)x∈W is uniquely determined by (3.3). Clearly, defining the restriction of a distribution
using the notion of parameter dependence (see, e.g. [1]) would be more intuitive. However,
this approach is more appropriate if one wants to show that the restriction of a distribution
does exist since one simply has to verify (3.3)—see the following example of the Pauli–Jordan
function. In the next section we would like to prove nonexistence for which, in the opinion
of the authors, the notion of parameter dependence is improper. The more technical notion of
wave front set provides the right tool to prove nonexistence of restrictions.

Example 3.4. The Pauli–Jordan function

Dm(x) = 1

i(2π)3

∫
d4pε(p0)δ(p2 − m2) ei〈p,x〉M ∈ S ′(R4)

has a canonical restriction to {x0 = 0}. Moreover, Dm(x) is a fundamental solution of the
Klein–Gordon operator, i.e.,

Dm(0, x) = 0, (∂x0Dm)(0, x) = δ(x).

That Dm(x) has a restriction to {x0 = 0} can either be seen by considering the wave front set
of Dm or, more explicitly, by showing that Dm(x0, x) is C∞-dependent on x0 as a parameter5:

(Dm)x0(x) = 1

(2π)3

∫
d3p
ω(p)

sin(ω(p)x0) e−ip·x.

Also the positive- and negative-frequency parts D(±)
m (x) have restrictions to {x0 = τ }(τ ∈ R).

In [11] the wave front set of D(−)
m (x) is explicitly determined:

WF
(
D(−)

m (x)
) = W

(−)
0 ∪ W(−)

+ ∪ W
(−)
− , with

W
(−)
0 = {(0, p) : p ∈ �−\0},W(−)

± = {(p,∓λp) : p ∈ �±\0, λ > 0)},
where �± = {p ∈ M

4 : p2 = 0,±p0 > 0}. Thus, condition (3.2) holds for D(−)
m . Since

D(+)
m (x) = −D(−)

m (−x) we have WF
(
D(+)

m

) = −WF
(
D(−)

m

)
and hence the same holds also for

D(+)
m .

In figure 1 we have illustrated the wave front set of D(−)
m . Each element (x, p) of

WF
(
D(−)

m

)
is represented by a pointed vector with base point x and unit vector in the direction

of p.

So far we have only defined the restriction of a distribution φ(x, y) to a hyperplane of the
form {x = a}(a ∈ R

m). However, any smooth submanifold of R
m can be described locally in

such a manner using appropriate charts. Let �τ = {(1/
√

2)(x0 + x3) = τ }(τ ∈ R) and κ the
linear transformation to light cone coordinates, then �τ = {κ−1(x̃) : x+ = τ }.

5 This is indeed true for every solution of the Klein–Gordon equation since the Klein–Gordon operator is hypoelliptic
with respect to x0, see [4–6].
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x3, p3

x0, p0

Figure 1. The wave front set of D
(−)
m .

Definition 3.5. A distribution φ(x) ∈ D′(R4) has a (canonical) restriction to �τ(τ ∈ R)

if κ∗φ(x̃) = (φ ◦ κ−1)(x̃) has a (canonical) restriction to {x+ = τ }. In this case we call
φ|�τ

= κ∗φ(τ, x̃) ∈ D′(R3) the (canonical) restriction of φ to �τ .

Remark 3.6. More generally, one can define the restriction of a distribution φ(x1, . . . , xr ) ∈
D′(R4 × · · · × R

4) to �τ1 × · · · × �τr
as the restriction of φ(κ−1(x̃1), . . . , κ

−1(x̃r )) to{
x+

1 = τ1, . . . , x
+
r = τr

}
, where x̃i = (x+

i , x̃i ) and τi ∈ R(i = 1, . . . , r).

4. Nonexistence of the restriction of the two-point function to the nullplane

Since we have explicit knowledge of the wave front set of D(−)
m it is easy now to show that the

two-point function W2(x, y) has no (canonical) restriction to � × �.

Theorem 4.1. Let W2(x, y) ∈ D′(R4×R
4) denote the two-point function of the real scalar free

massive field. Then W2(x, y) has no canonical restriction to �×� = {x0 +x3 = y0 +y3 = 0}.
Proof. Since W2(x, y) = −iD(−)

m (x − y) it is enough to show that D(−)
m (x) has no

canonical restriction to � = {x0 + x3 = 0}. By remark appendix B.3 we have to show
that Nλ ∩ WF

(
D(−)

m

) �= ∅ where Nλ is the set of normals of λ : R
3 → R

4, (x1, x2, x−) →
(x−/

√
2, x1, x2,−x−/

√
2). One easily verifies that

Nλ = {(x, p) ∈ � × R
4 : p0 = p3}

and hence Nλ ∩ WF
(
D(−)

m

) �= ∅, which is easily seen by considering figures 1 and 2. �

So far we have shown that D(+)
m (x) and D(−)

m (x) have no canonical restriction to � = {x0+x3 =
0}—note that WF

(
D(+)

m

) = −WF
(
D(−)

m

)
. In supplementary we will show that this also holds

true for the Pauli–Jordan function Dm which is the sum of D(+)
m and D(−)

m .

Proposition 4.2. The Pauli–Jordan function Dm(x) has no canonical restriction to �.

Proof. We will show that WF(Dm) = WF
(
D(+)

m

) ∪ WF
(
D(−)

m

)
; the assertion follows then

from the proof of theorem 4.1. Since Dm = D(+)
m + D(−)

m we get only one direction,
namely WF(Dm) ⊂ WF

(
D(+)

m

) ∪ WF
(
D(−)

m

)
. To prove the other inclusion we may

assume w.l.o.g. that WF(Dm) ∩ WF
(
D(−)

m

) �= ∅. Since L↑
+, the restricted Lorentz group,
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Σ

x3, p3

x0, p0

Figure 2. The set of normals Nλ.

operates transitively on WF
(
D(−)

m

)
and since Dm, and hence WF(Dm), is invariant under

L↑
+, one obtains WF

(
D(−)

m

) ⊂ WF(Dm) (see also the proof of theorem IX.48 in [11]).
Furthermore, WF

(
D(+)

m

) ⊂ WF(Dm) since WF(D(+)
m (x)) = −WF(D(−)

m (x)) ⊂ −WF(Dm)

and −WF(Dm(x)) = WF(Dm(−x)) = WF(Dm(x)). �

5. The tame restriction of the two-point function

The nonexistence of the restriction of the Pauli–Jordan function to � = {x0 + x3 = 0} is
related to a fundamental problem in light cone quantum field theory where one describes the
dynamics of a quantum field by using x+ = (1/

√
2)(x0 + x3) as ‘time’-evolution parameter.

In this context it is essential to have well-defined fields for fixed x+ = const. However, to
carry out the standard construction of a free field for fixed time, one has to remain in a proper
subspace of S(R3) [9] which was considered as a fault of the theory [13]. In [14] this problem
was solved by introducing a new test function space S∂−(R3) on which the ‘restriction’ of the
free field can be defined and which determines the covariant field uniquely—we call this the
‘tame restriction’ of the free field to �. Now, since the covariant commutator relation of a
free field φ reads

[φ(x), φ(y)] = −iDm(x − y), (5.1)

where Dm is the Pauli–Jordan function, we see that the problem of nonexistence of the real
scalar field on � results in the nonexistence of the restriction of the Pauli–Jordan function
to �. In [15] we introduced the tame restriction of a generalized function and computed it
for the Pauli–Jordan function, where we obtained (1/4)δ(x⊥) ⊗ ε(x−). Hence, if we take
the tame restrictions (to �) on both sides of (5.1) we arrive at the well-known commutator
relation of light cone quantum field theory [3]. The same happens with the two-point function
W2(x, y) = 〈0|φ(x)φ(y) |0〉 since

〈0|φ(x)φ(y) |0〉 = −iD(−)
m (x − y), (5.2)

and D(−)
m does not have a canonical restriction to �. However, since D(−)

m is a solution of
the Klein–Gordon equation (� +m2)D(−)

m = 0 we know from [15] that D(−)
m admits a tame

restriction to �. In the sequel we will compute this tame restriction explicitly and show that it
is independent of the mass. Since the tame restriction of the free field to � is also independent
of the mass [14, 16] no inconsistency appears if we take the tame restrictions (to �) on both
sides of (5.2). First of all we have to recall the definition of the tame restriction of a generalized
function to �—for details see [14, 15].
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Definition 5.1. (a) Let Sp+(Rn) = ⋂
k∈N0

{(p+)kg : g ∈ S(Rn)} be the topological vector
space endowed with the subspace topology induced by S(Rn); the dual space S ′

p+(R
n) is

called the space of squeezed generalized functions.
(b) Let S∂−(Rn) = ⋂

k∈N0
{∂k

x−g : g ∈ S(Rn)} be the topological vector space endowed
with the subspace topology induced by S(Rn); the dual space S ′

∂−(Rn) is called the space of
tame generalized functions.

Remark 5.2. The achievement of definition 5.1 (a) is the following: any function h ∈ Sp+(Rn)

(as well as any of its derivatives) goes to zero for |p+| → ∞ due to the rapidly decreasing
behaviour of g ∈ S(Rn) and it also goes to zero for |p+| → 0 faster than any power of |p+|
due to the presence of the factor (p+)k for all k ∈ N0. Definition 5.1 (b) is induced from (a)
via the Fourier transform. Recall that the Fourier transform is an isomorphism from S(Rn)

onto S(Rn) and maps S∂−(Rn) onto Sp+(Rn). Furthermore, the spaces Sp+(Rn) and S∂−(Rn)

are Fréchet spaces.

Since we are using light cone coordinates, we also have to introduce the so-called L-Fourier
transformation FL : S(Rn) → S(Rn) defined by

FL(f )(p̃) =
∫

f (x̃) ei〈x̃,p̃〉L dx̃,

where 〈x̃, p̃〉L = x+p− + x−p+ − x⊥ · p⊥. Since x+ is the time variable in light cone physics
we also introduce the spatial part of the L-Fourier transformation

f �(p̃) = F x̃→p̃
L

(f )(p̃) =
∫

f (x̃) ei(x−p+−x⊥·p⊥) dx̃,

which, in the special case of only one dimension, reads

f �(p+) = Fx−→p+

L
(f )(p+) =

∫
f (x−) eix−p+

dx−.

Clearly, FL,F x̃→p̃
L

andFx−→p+

L
are isomorphisms from S(Rq) onto S(Rq) which map S∂−(Rq)

ontoSp+(Rq)(q appropriately chosen) and which extend canonically to sequentially continuous
maps from S ′(Rq) onto S ′(Rq) respectively from S ′

∂−(Rq) onto S ′
p+(R

q).

Definition 5.3 (tame restriction). (a) A generalized function φ(y, z, x−) ∈ S ′(Rm+n+1) admits
a tame restriction to {y = y0}(y0 ∈ R

m) if there is an open neighbourhood � ⊂ R
m of y0 and

a family (φy)y∈� with φy ∈ S ′
∂−(Rn+1)(y ∈ �) such that � → C, y → (φy, g) is C∞ for all

g ∈ S∂−(Rn+1) and

(φ(y, z, x−), f (y)g(z, x−)) =
∫

�

dy(φy, g)f (y)

for all f (y) ∈ D(�) and g(z, x−) ∈ S∂−(Rn+1). In this case we call φ|∗y=y0
= φy0 ∈ S ′

∂−(Rn+1)

the tame restriction of φ to {y = y0}.
(b) A generalized function φ(x1, . . . , xr ) ∈ S ′(R4r ) admits a tame restriction to �τ1 ×

· · · × �τr
(�τi

= {xi ∈ R
4 : (1/

√
2)(x0

i + x3
i ) = τi}, i = 1, . . . , r) if φ(κ−1(x̃1), . . . , κ

−1(x̃r ))

admits a tame restriction to {x+
1 = τ1, . . . , x

+
r = τr}; in this case we call φ|∗�τ1 ×···×�τr

=
φ(κ−1(x̃1), . . . , κ

−1(x̃r ))|∗x+
1 =τ1,...,x+

r =τr
the tame restriction of φ(x1, . . . , xr ) to �τ1 ×· · ·×�τr

.

Proposition 5.4. Let D(−)
m (x) ∈ S ′(R4) denote the negative-frequency Pauli–Jordan function.

Then D(−)
m (x) admits a tame restriction to �τ(τ ∈ R) and 6

(
D(−)

m

∣∣∗
�τ

, g
) = −1

i(2π)3

∫
p+<0

d3p̃
2|p+|

(
F x̃→p̃

L
g
)
(p̃) eiω̃(p̃)τ .

6 Obviously, by p+ → −p+, the region of integration in the right-hand side can be chosen to be {p+ > 0}.
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for all g(x̃) ∈ S∂−(R3), where ω̃(p̃) = (1/2p+)
(
p2

⊥ + m2
)
.

Proof. Let f (x+) ∈ S(R) and g(x̃) ∈ S∂−(R3). By definition

((
D(−)

m ◦ κ−1
)
(x+, x̃), f (x+)g(x̃)

) = −1

i(2π)3
(δ−(p̃2 − m2), f̂ (−p−)g�(p̃))

= −1

i(2π)3

∫
p+<0

d3p̃
2|p+| f̂ (−ω̃(p̃))g�(p̃). (5.3)

Since g ∈ S∂−(R3) we have f (x+)g�(p̃) ∈ L1
(
R × R

3, dx+ ⊗ dnp̃
|p+|

)
. Hence we can put

f̂ (−ω̃(p̃)) = ∫
dx+f (x+) eiω̃(p̃)x+

in (5.3), and obtain

((
D(−)

m ◦ κ−1
)
x+ , g

) = −1

i(2π)3

∫
p+<0

d3p̃
2|p+|g

�(p̃) eiω̃(p̃)x+
.

Thus, the assertion follows since (D(−)
m |∗�τ

, g) = ((
D(−)

m ◦ κ−1
)
τ
, g

)
. �

Remark 5.5. Note that D(−)
m is uniquely determined by its tame restriction to �0 [15].

Remark 5.6. One can easily verify that if a generalized function ψ(x, y) ∈ S ′(R4 × R
4)

is of the form ψ(x, y) = φ(x − y), where φ ∈ S ′(R4), and φ has a tame restriction to
τ1 − τ2 then ψ has a tame restriction to �τ1 × �τ2 and ψ |∗�τ1 ×�τr

= φ|∗�τ1−τ2
(x̃ − ỹ). Note that

(φ(x − y), f (x)g(y)) = (φ, f ∗ g∨), where ‘*’ means convolution and g∨(x) = g(−x).

Corollary 5.7. Let φ(x) be the real scalar free field of mass m > 0, and W2(x, y) =
〈0|φ(x)φ(y) |0〉 the associated two-point function. Then W2(x, y) admits a tame restriction
to �τ × �τ = {x+ = y+ = τ }(τ ∈ R) and

W2(x, y)|∗�τ ×�τ
= δ(x⊥ − y⊥) ⊗ G(x− − y−) ∈ S ′

∂−(R3 × R
3),

where G = (
Fx−→p+

L

)−1
(�(p+)/p+) ∈ S ′

∂−(R). In particular, the tame restriction of W2(x, y)

to �τ × �τ is independent of the mass.

Proof. Since W2(x, y) = −iD(−)
m (x − y) it is enough to show that D(−)

m admits a tame
restriction to � = {x+ = 0} and that D(−)

m |∗� = iδ(x⊥)⊗G(x−) (cf remark 5.6); however, this
follows immediately from proposition 5.4. �

6. Conclusion

To get rid of the (perturbative) zero mode and restriction problem in light cone quantum
field theory, we have introduced in [14] the function space S∂−(R3) and its dual space—the
space of tame generalized functions. The problem that the restriction of the real scalar free
massive field to � = {x0 + x3 = 0} cannot be defined in the canonical way, manifests itself in
the problem that the (positive-/ negative-frequency) Pauli–Jordan function has no canonical
restriction to � in the sense of distribution theory. We were able to show the nonexistence of
the restriction of the Pauli–Jordan function to � by considering its wave front set. Note that
this is much stronger than merely showing that the common techniques cannot be applied.
Thus the assumed inconsistency that the restriction of a massive, real scalar, free field to � is
independent of the mass, but the restriction of the two-point function is mass dependent comes
to nothing since a priori the (canonical) restriction (in the sense of distribution theory) of the
two-point function does not exist. In computing the so-called tame restriction of the two-point
function we obtain a (massless) result which is consistent with light cone quantization. Note
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that by results from [15] each solution in S ′(R4) of the Klein–Gordon equation is uniquely
determined by its tame restriction to �. Concluding we remark that it should be possible to
develop axiomatic light cone quantum field theory on the same footing as axiomatic quantum
field theory in Minkowski space by working with the unorthodox, but better adapted function
space S∂−(R3) instead of S(R3). In the case of a free field this has been done in [14], but
it should also be possible with interacting fields. The reason is that nonperturbative effects
manifest themselves by the appearance of operator-valued zero modes of the field operators
which do not give rise to additional singularities [7]. This will be the subject of further work.

Appendix A. The wave front set

The wave front set of a distribution is not only important for the (canonical) restriction of
distributions but plays also a central role in the so-called microlocal analysis [8]. The definition
starts by firstly considering only distributions with compact support. Let φ ∈ D′(X),X ⊂ R

n

open, be a distribution with compact support. A non-zero vector k0 ∈ R
n is called a

regular direction of φ if there exists an open conic neighbourhood V of k0 such that the
Fourier transform of φ is rapidly decreasing on V , i.e. supk∈V (1 + |k|)N |φ̂(k)| < ∞ for all
N = 0, 1, 2, . . .; otherwise k0 is called a singular direction of φ. The set of all singular
directions of φ is denoted by �(φ). If φ has not necessarily compact support one considers
localizations of φ, i.e., distributions of the form hφ where h ∈ D(X) is a smooth function
with compact support which equals the constant function 1 in an open subset of X. Since each
such hφ is a distribution with compact support, the set �(hφ) of all its singular directions is
well defined. Now, if x ∈ X is some point, one defines �x(φ) as the intersection of all sets
�(hφ) where h runs through the set of all functions in D(X) which are equal to the constant
function 1 in an open neighbourhood of x. The wave front set WF(φ) of a distribution
φ ∈ D′(X) is the set of all pairs (x, k) in X × (Rn\0) such that k ∈ �x(φ). There is
an important connection, which we would like to mention, between the wave front set of a
distribution φ ∈ D′(X) and its singularities. A point x ∈ X is a regular point of φ, i.e., φ is a
smooth function in some neighbourhood of x if and only if �x(φ) is the empty set; otherwise
x is a singular point of �. Hence, if x ∈ X is a singular point of φ then �x(φ) is the set of
all singular directions which are common to all localizations of φ at x and which ‘cause’ the
singularity of φ at x.

Appendix B. The pullback operation

In this part of the appendix we introduce the pullback operation for distributions and outline its
relation to the (canonical) restriction of distributions. Let f : X → Y denote a C∞ mapping
between open sets X ⊂ R

m, Y ⊂ R
n. If φ : Y → C is a function on Y, the composite function

f ∗φ = φ ◦ f is a function on X and is called the pullback of φ via f ; the operation f ∗,
which assigns to each function on Y the function f ∗φ = φ ◦ f on X, is called the pullback
operation. A central problem in distribution theory is to extend the pullback operation from
smooth functions to distributions φ ∈ D′(Y ). Here also the wave front set plays an important
role. The following theorem gives the right subspace of D′(Y ) to which the pullback operation
can be extended from the case of smooth functions.

Theorem B.1 ([8], theorem 8.2.4). Let X ⊂ R
m and Y ⊂ R

n be open subsets and let
f : X → Y be a C∞ map. Then the pullback f ∗φ can be defined in one and only one way for
all φ ∈ D′(Y ) with

Nf ∩ WF(φ) = ∅ (B.1)
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so that f ∗φ = φ ◦ f when φ ∈ C∞(Y ). Hereby

Nf = {(f (x), η) ∈ Y × R
n : (dxf )tη = 0}

and is called the set of normals of f .

From theorem 8.2.4 in [8] one also obtains

WF(f ∗φ) ⊂ f ∗WF(φ) (B.2)

whenever Nf ∩ WF(φ) = ∅, where

f ∗WF(φ) = {(x, (dxf )tη) : (f (x), η) ∈ WF(φ)}.
Since the pullback operation is a (contravariant) function, i.e., (g◦f )∗ = f ∗ ◦g∗(g : Y → Z),
one obtains from (B.2):

Corollary B.2. Let f : X → Y (X, Y ⊂ R
m) be a C∞ diffeomorphism. Then

WF(f ∗φ) = f ∗WF(φ)

for all φ ∈ D′(Y ). (Note that Nf = Y × {0}.)
The relation to the (canonical) restriction of distributions goes as follows. Let U ⊂ R

m, V ⊂
R

n be open sets and a ∈ U . Further denote by ι : V → U × V the C∞ mapping defined by
ι(y) = (a, y). Then the restriction φ|x=a equals the pullback ι∗φ. The restriction operation is
thus a pullback operation with respect to a special f (= ι). If we compute the set of normals
Nι, we obtain Nι = {((a, y), (p, 0))|y ∈ V, p ∈ R

m}. Hence, condition (3.2) for the existence
of the canonical restriction is equivalent to condition (B.1) for the existence of the pullback.

Remark B.3. If we denote by λ : R
3 → R

4, x̃ = (x1, x2, x−) → (x−/
√

2, x1, x2,−x−/
√

2)

then λ(R3) = � = {x0 + x3 = 0} and λ = κ−1 ◦ ι̃0, where ι̃0(x̃) = (0, x̃). Hence

λ∗φ = (κ−1 ◦ ι̃0)
∗φ = ι̃∗(κ∗φ) = φ|�,

i.e., φ|� is the pullback of φ with respect to λ. Note that λ is a smooth parametrization of
�, but � has infinitely many. However, if µ is another smooth parametrization of � then
λ = µ◦ (µ−1 ◦λ), where µ−1 ◦λ is a C∞ diffeomorphism from R

3 to R
3. Hence, by corollary

appendix B.2, λ∗φ exists if and only if µ∗φ exists, and in this case λ∗φ and µ∗φ differ only
by multiplication of a smooth function—the determinant of the Jacobian of µ−1 ◦ λ.
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